
General Manual
Table of Contents
About This Document..4
Why You Should Read It..4
Note Of Thanks..5
About The Author...5
Supporter..5
Tell A Friend!..5
Basic For Qt® Needs Your Help!...5
Give Us Feedback...6
New Set Of Manuals..6
Installation..7
Introduction..7
Qt..7
What is a Computer Program?...8
Programming Languages..9
History of the Name...9
All Kinds of BASIC...10
Compilers and Interpreters...10
The Programming Process..10
Attack of the Bugs..11
How much do I need to know to use it?...12
Introduction to the Basic For Qt® programming language..12

What is Basic For Qt®?...12
Briefly and well in a sentence..12
Basic For Qt®'s Past, Present and Future..13
What is still needed to know about Basic For Qt®?..13
Basic For Qt® is object-oriented...13
Stable...13
Basic For Qt® is Fast...13
Rapid application development...14
How Can I Get Basic For Qt®?...14
On which platform is Basic For Qt® available?..15

Software development with Basic For Qt®...15
Event controlled programming vs. traditional programming..15
How does an event controlled application run?...15
Three Programming Steps...16

Objects and classes...16
Inheritance of classes...18

Statements and expressions..18
Multi-Line statements...19
Variables and Data Types...19

Declaration of Variables...19
Declarations of variables in different scopes...21
Use of the 'Public'-Statement...22
Use of the 'Private'-Statement..22

Page 1

Local variables...22
Assignment-statement..22
Lifetime of variables..23
Place of declaration..23

Data Types..24
Simple Data Types...24
Data Type Size...24
Class types/Objects..25
Type generic object..25

Comments...25
Way of naming..26
Literals..26
Expressions...27
Constants..27
Operators and Operands...28

Operators for calculating...28
Increment and Decrement..30
Comparison..30
Logical operators (Boolean Operators)..30
Other Operators..31
Operator order..31

Avoiding name collision...32
Editing source code..32
Working with objects..32

Create new objects...33
Use of Init functions..33
Create a class...33
Classes are not executed, but methods are...34
Accessing objects...34
Accessing instance-variables...34
Instance-methods...35
Calling methods...35
References to objects...35
Copying objects...35
Comparison of objects...36
Creating object variables...36
Declaration of an object variable...36
Assignment of objects to an object-variable..37
Use current instance or object / Me...37
Subclassing and inheritance...38
Hidden Methods...38
Overriding methods...39
Calling an overridden method..39
Hiding data...40
Scope modifiers...40

Arrays...41
Control of the program flow...41

Decisions..42
Single decision - If...42
Select..43

Page 2

Loop-statements...45
For Next...45
For Each...46
Other kind of loops..46
Do While...Loop..47
Explicitly leave a loop...48
Explicitly test a condition..49
Nested control structures...49

Procedures / Methods...49
Sub-Procedure..50
Function-Procedure..50
Arguments..50
Named arguments..51
Writing function-procedure...52
Call of sub-procedures and function-procedures...52
Add comments to a procedure...52
Hints for calling procedures...52
Leave procedure...52
Use of return value after calling a function-procedure..53
Writing recursive procedures...53
Functions..54
Function Return...54
Modifiers / Scopes...55
Local scope..55

Classes..56
Classes unlike procedures are not executed...56
Edit Class...56

The Basic For Qt® development environment...57
Windows..57
Toolbar...58
Editor...58

Classes and objects of Basic For Qt®..58
Projects...58
Interfaces..59
Appendix..59
Copyright..66

Page 3

About This Document
Welcome to this document, your guide for the development of your
Basic For Qt® applications. In this manual you find some necessary
information to successfully build your Basic For Qt® programs. If you
complete this document, you will be able to write some simple Basic
For Qt® programs.

When you begin with Basic For Qt® read the first chapters to learn
about the programming language. Then try out the examples shipping
with Basic For Qt® and of this manual. The principal purpose of this
manual is to give you an overview about the programming language at
all. The less experienced Basic For Qt® programmer receives an
introduction to the programming language Basic For Qt®. The object-
oriented and other features of it are explained by some examples of
the most important elements of Basic For Qt®.

You will find a complete reference of the Qt frameworks and the Basic
For Qt® framework inside Basic For Qt®’s integrated development
environment and therefore this manual comes without a detailed
reference.

Why You Should Read It
This document is written both for people with some background
knowledge and for absolute beginners. Experienced developers should
feel very comfortable. This manual is meant for people, who:

• want to learn a simple and powerful programming language for
Windows, Linux and Mac OS X;

• are experienced C/C++, Java, or BASIC developers, who want to
switch to Qt/Basic For Qt® or want to extend their abilities;

• or have heard of a new programming language for Windows, Linux
and Mac OS X and want to learn it.

This document is an asset for anyone doing serious development with
Basic For Qt®; gives you a solid background in the fundamentals of
Basic For Qt®; and takes you step by step through the features of the
language.

Page 4

Note Of Thanks
We are very grateful to all the people who helped me to complete this
manual.

About The Author
Bernd Noetscher is the developer of the Basic For Qt® programming
language.

His private website is www.berndnoetscher.de

Supporter
Thank you for proofreading this manual and for beta testing.

Thanks to everyone on the Internet who submitted corrections and
suggestions; you have been tremendously helpful in improving the
quality of this manual and I could not have done it without you: Thank
you all!

Tell A Friend!
Like it? Love it?

Help us spread the word about Basic For Qt®.

When you share Basic For Qt® Software, you will make your friends
happy and give us a hand in getting the word out around the world.

Basic For Qt® Needs Your Help!
And the best way to help Basic For Qt® (and to help Linux and Mac OS
X to become an alternative to Windows) is to buy and use the Basic For

Page 5

http://www.berndnoetscher.de/

Qt® Professional Edition. With your help and financial support, it will
be possible to continue the development of Basic For Qt® for many
years.

You can help Mac OS X and Linux, when you help Basic For Qt®,
because Basic For Qt® is an important piece of the puzzle showing the
needed software for leaving Windows far behind. With your support it
will be possible to show the world that BASIC development software do
not have to be limited and difficult.

It is up to you!

Give Us Feedback
Please help us to improve this book. As the reader, you are the most
important commentator and critic of this document. We respect your
opinion and would like to know what improvements we could make. If
you find an error in any example program or in the text, sent an e-mail
to sales@kbasic.com. Thank you!

Please note that we cannot help you with technical problems related
to the topic of this book, and that due to the high volume of mail we
receive, we might not be able to reply to every message.

Our primary goal is the satisfied customer. In order to improve, we
need your help. If we have made any mistakes, please tell us. Please
write to sales@kbasic.com – we would like to get positive comments,
too. Thank you very much.

New Set Of Manuals
Basic For Qt® has aroused much Internet interest in the Internet
among businesses and the developers. In response, we documented
this exciting new technology with a set of new manuals. This series of
manuals covers language references, introductory volumes, API
references, and advanced topics of programming in Basic For Qt®,
such as databases and networks.

Page 6

Installation
Simply unzip the download file and copy the Basic For Qt® application
where you like.

Before you can use Basic For Qt®, you must have installed the
developer tools of Qt SDK. See the donwload page on q7basic.org for
more details.

Introduction
You heard probably already much about Basic For Qt® and have
probably downloaded Basic For Qt® and played a little with the sample
programs. And now you want to have your own Basic For Qt®
programs... Have you ever wanted to know how a computer program
works? If so, there might be a computer programmer somewhere inside
you, waiting to get out.

You might have found computer programming not only difficult but
downright frightening. Are you going nearly crazy, if you try to write a
simple script file? If you feel this way, this manual is here to prove that
programming your computer is fun, rewarding, and not difficult. But
before you get started with developing computer programs, you ought
to have a basic understanding of what programming is all about. You
probably have some ideas about what a program is and how it works.
After reading this introduction, you may find that your knowledge
about programming is good or you know... In either case, it is worth
it...

Qt
Did you ever want to write cross-platform programs that look and
operate like native applications? Hesitate to get hands on C++ with Qt?
But you have the experience of simplified object-oriented BASIC
programming? Then, Basic For Qt® seems to be the right decision.
Basic For Qt® is an Integrated Development Environment for using the
Qt Framework with an object-oriented BASIC dialect.

Qt is an object-oriented application environment designed specifically
for developing cross-platform applications quickly and efficiently. The
Qt frameworks include a complete set of classes, and for developers

Page 7

starting new cross-platform projects, Qt provides the fastest way to
full-featured, extensible, and maintainable applications. You can bring
applications from Windows, to Linux and Mac OS X quickly by using Qt
to build state-of-the-art user interfaces while retaining most existing
core code.

Qt is distinguished from other object-oriented development
environments in several ways: Qt is mature, consistent, and broad. Qt
is extraordinarily extensible, flexible and dynamic.

Because you use Qt and the default compiler of the open source
community (gcc) through Basic For Qt® the number of possible bugs,
when you create your Qt application, is reduced nearly to zero. Basic
For Qt® is a mature tool, ready for production!

There are two ways to develop Qt applications with Basic For Qt®. The
first one is the difficult approach, by directly using the Qt functions.
You are responsible for creating the right structure for your files and
you must know many Qt classes in detail. The second and much easier
way to build Qt apps is to use the Qt Designer comming with the Qt
SDK, enabling you to write Qt applications in a short amount of time,
as it provides you with a set of files and structure.

In Basic For Qt® memory management is automatically managed by a
garbage collector provided by the runtime of Basic For Qt®.

What is a Computer Program?
A computer program is a list of instructions telling a computer what to
do. The computer follows these instructions or commands, one by one,
until it reaches the end of the program.

Each line in a computer program is usually a single command that the
computer must do. Each command does only a very small task, such as
printing a name on the screen or adding four numbers. When you put
hundreds, thousands, or even hundreds of thousands of these
commands together, your computer can do great things: calculate
mathematical problems very quickly, print a document, draw pictures,
or play computer games.

As you can see in the next paragraph, computer programs can be

Page 8

written in one of many different programming languages.

Programming Languages
Computers do not understand German or English or any other human
language. They cannot even understand BASIC, the computer language
upon which Basic For Qt® is based. Computers understand only one
thing, machine language, which is entirely composed of the numbers 1
or 0. Programming languages like BASIC allow people to write programs
in an English-like language. The BASIC interpreter changes the program
into machine language so the computer can understand it. Basic For
Qt® programs are a dialect of the BASIC computer language that was
developed not to help computers, but to help people make sense out
of the numerical code machines use to function. Basic For Qt®
replaces many of the numbers used by machine language with words
and symbols we can more easily understand and remember. Moreover,
it enables a programmer to visually assemble a program’s window from
parts in a toolbox. It is much easier for you to communicate with your
computer as an software developer; instead of thinking as a machine
you can think as an human being.

History of the Name
Sometimes, you see the name of the BASIC language spelled with
lowercase letters like this: Basic. Even Basic For Qt® uses this spelling.
However, BASIC actually started out as an acronym, which is why you
also see the name spelled in all capital letters. The BASIC acronym
stands for Beginner’s All-purpose Symbolic Instruction Code. A BASIC
program uses symbols and words (and a few numbers) that people can
understand. How it is possible that the computer can understand and
run BASIC?

When you load Basic For Qt® you are also loading a compiler. A
compiler is a special program that takes the words and symbols from a
Basic For Qt® program and translates them into machine language the
computer can understand. Your computer would not have any idea
what to do with your program without the compiler’s interpretation of
your programs. Many computer languages exist, including Java, C++
and BASIC. However, all computer languages have one thing in
common: they can be read by humans and therefore must be

Page 9

converted to machine language before the computer can understand
them.

All Kinds of BASIC
There are many versions of the BASIC language, of which Basic For Qt®
is only one. All these software packages allow you to create computer
programs with BASIC, but they all implement the BASIC language
slightly differently.

Only Basic For Qt® enables you to write modern Qt applications.

Compilers and Interpreters
Some computer languages, such as some types of BASIC, convert a
program to machine language one line at a time as the program runs.
Other languages, such as C++ and Basic For Qt®, use a compiler to
convert the entire program all at once before the program runs. In any
case, all programming languages must be converted to machine
language in order for the computer to understand the program.

A compiler changes your program into an executable file that can be
run directly, without a compiler or interpreter. An executable program
is actually a machine language program that is ready for your
computer to read and understand. With few exceptions, most
computer programming languages have a compiler. It can be difficult
to distinguish between compilers and interpreters, because a few
programs, such as Java, are a mix of compiler and interpreter.

The Programming Process
Now that you know something about computer programs, how do you
go about writing one? Creating a computer program is easy, though it
can be a long process. Writing a Basic For Qt® program requires
development steps similar to those you use when writing a paper or
report. The following list outlines these steps:

1. Come up with a program concept and sketch out on paper how it
might look on the screen.

2. Create the program.
3. Save the program to disk.

Page 10

4. Run the program and see how it works.
5. Fix programming errors.
6. Go back to step 3.

Most of the steps in the programming process are repeated over and
over as errors are discovered and corrected. Even experienced
programmers cannot write error-free programs unless the program is
extremely short. Programmers often spend more time fine-tuning their
programs than they do writing them initially. It is important to do the
fine-tuning, because we are not as logical as we like to think.
Moreover, human minds are incapable of remembering every detail
required to make a program run perfectly. When a program crashes or
does something unexpected we have to find errors hiding within code.
Computer experts say there is no such thing as a program without
bugs. After you start writing full-length programs, you will see how
true this statement is.

Attack of the Bugs
Bugs are programming errors that stop your program from running
correctly. Before a programmer can release his or her program to the
public, he or she must correct as many errors as possible.

Is Programming difficult?

Well, yes and no.

It is easy to learn to write little programs with Basic For Qt®. The
language is logical, English-like, and easy to understand. With only
minimal practice, you can write many useful and fun programs.

However, if you want to make programming a career, you have much to
learn. For example, consider a word-processing program such as
OpenOffice, which took dozens of programmers many years to write.
To write such complex software, you must have good knowledge of
how your computer works. Additionally, you must have spent many
years learning the skills of professional computer programming.

Still, there is a lot you can do with Basic For Qt® whether you are
interested in writing utilities, small applications, or even computer
games. And, step by step, you will discover programming in Basic For

Page 11

Qt® is not as difficult as you might have thought.

How much do I need to know to use it?
It is possible to develop Basic For Qt® programs without having to
write any lines of source code. There are many places (hopefully in the
future) to obtain Basic For Qt® programs, such as books, the Internet,
and even your friends and colleagues. You can drop these programs
into Basic For Qt® and have an application ready to use. However,
sometimes these programs need modifications and this is where real
challenges to your programming expertise occurs.

Introduction to the Basic For Qt® programming language
Welcome to the Basic For Qt® programming language. This chapter is
concerned with what exactly Basic For Qt® is; why you should learn
Basic For Qt® and what makes Basic For Qt® different from other
programming languages; first steps inside Basic For Qt®, which
background knowledge is needed and some basic knowledge; and how
to write your first Basic For Qt® program.

What is Basic For Qt®?
Basic For Qt® is a powerful programming language designed to be
intuitive and easy to learn. Basic For Qt® is a new programming
language, a further BASIC dialect related to Visual Basic and C++. More
precisely, Basic For Qt® is an object-oriented and event-controlled
programming language and is designed particularly for the needs of
GUI developers.

C++ developers feel that BASIC is a beginner language, but with Basic
For Qt® you can write many applications that may otherwise have
been written with the more difficult C++.

Briefly and well in a sentence
Basic For Qt® is an easy to use, object-oriented, compiled, stable,
independent, fast and modern programming language.

Page 12

Basic For Qt®'s Past, Present and Future
At present, Basic For Qt® is under construction. It will become more
user-friendly, more efficient, and get more programming libraries and
new object-oriented features.

What is still needed to know about Basic For Qt®?
Basic For Qt® is easy to learn: Basic For Qt® is an easy to use
language, designed for rapid development and easy error tracing. Basic
For Qt® is modeled after standard BASIC and C++. It contains object-
oriented ideas of C++, whereby confusing elements were omitted.
Basic For Qt® is actually a complete and an elegant programming
language.

Basic For Qt® is object-oriented
That means for you as a programmer that you concentrate on the data
and on the methods in your application - how to manipulate the data,
instead of thinking only in procedures. If you get to know with it, how
powerfully this new object-oriented paradigma is, you will get used to
it, because you will see how easy it is to develop re-useable complex
application programs clearly and in a modular way. Contrary to other
programming languages Basic For Qt® is designed from the beginning
as an object-oriented programming language. So all things in Basic For
Qt® are objects; even the simple data types, like numeric and boolean
values.

Stable
Basic For Qt® is designed to write very reliable and durable software.
Of course, Basic For Qt® does not eliminate the need for quality
control. It is still possible to write unreliable software. However Basic
For Qt® eliminates certain kinds of programming errors so that it is
easier to write reliable software.

Basic For Qt® is Fast
Basic For Qt® is a compiled programming language. Therefore, it is
fast as C++. Basic For Qt® programs are compiled into C++ code, which
is itself compiled using the default compiler of the open source

Page 13

community (gcc).

Rapid application development
You can use Basic For Qt® for visual programming features to quickly
develop Basic For Qt® applications. Actually, you use the default tool
for GUI development for Qt: Qt Designer developed by Nokia (the
creator of Qt).

The Qt Designer let you point and click to:

1. Design the user interface for your program;
2. Specify the behavior of the user interface elements; and
3. Define the relationship between the user interface and the rest

of your program (in some cases)

In addition to its visual programming features, Basic For Qt® gives you
the ability to quickly complete many tasks, including create new
program elements. In Basic For Qt®, a program element is one of the
following:

Project: the top-level program element in Basic For Qt®. A project
contains classes and definitions. Currently, the project management is
directory based, which means a project is defined through the context
of a directory. Inside this directory, there is a directory containing the
executable with resources like images. Additional, inside your project
directory are the source codes files in Basic For Qt® and the
automatically generated C+ files.

Interface definitions (ui files): the Basic For Qt® visual programming
feature.

Class: the Basic For Qt® language construct. Classes contain the source
codes.

How Can I Get Basic For Qt®?
You can buy Basic For Qt® Professional. You can get it directly from its
maker www.Q7Basic.org, where you can purchase a commercial
license.

Page 14

On which platform is Basic For Qt® available?
At this time, versions of Basic For Qt® for Windows, Mac OS X and
Linux are supported.

Where can I find more information about Basic For Qt®? Examples,
documentation, and news?

First read this book. You can also get news and new information on
http://www.Q7Basic.org/. Many programming examples are posted on
the Internet.

Software development with Basic For Qt®
A typical Basic For Qt® application consists of interface elements,
classes, and other objects, which together are your application.
Interface elements have events and generates events. You can react by
assigning Basic For Qt®-code to such events.

Event controlled programming vs. traditional programming
When a traditional, procedure-built program runs, the application
controls the executable parts of the program, ignoring the events. The
application starts with the first code of line and goes through its
source codes as the developer has defined. If needed some procedures
are called.

In event controlled applications, user action or a system event triggers
the execution of the event procedure. The order in which the code is
executed depends upon the order of the events, which occur based
upon user actions. This is the principle of graphical user interfaces and
event controlled programming. The user performs an action and your
program reacts.

How does an event controlled application run?
An event is an action recognized by your windows or interface
controls. Objects in Basic For Qt® know some predefined events and
react to them automatically. To get a control to react to an event,
write an event procedure for this event. A typical application runs as
follows:

Page 15

1. The user starts the application.
2. The window or control receives an event. The event can be

triggered by a user-action (e.g. key pressed) or by your code
(e.g. event ‘Open’ if your code opens a something).

3. If there is a event-procedure for the event, the desired event code
executes

4. The application waits for the next event

Three Programming Steps
To create a simple Basic For Qt® program, you need only complete
three steps, after which you will have a program that can be run
outside of Basic For Qt®’s programming environment just like any
other application you may have installed on your computer. The three
steps are as follows:

1. Create the program’s user interface
2. Write the program source code, which makes the program do what

it is supposed to do
3. Compile the program into an executable file to run as a

standalone application

Of course, there are many details involved in each of these three
steps, especially if you are writing a lengthy program. As you work,
complete these steps in the order listed above. You should frequently
alternate between steps 2 and 1 to fine-tune your user interface. You
might even return to step 2 from step 3 as you discover problems after
compiling your program.

Objects and classes
Basic For Qt® is an object-oriented programming language. Object-
oriented, in Basic For Qt® terms, contains the following ideas:

• Classes and objects in Basic For Qt®
• Creating objects
• Garbage collection to release unused objects

There are no class variables or class functions yet, all variables and
functions are useable together with objects only due to simplify the

Page 16

object-orientation. Though class variables and functions might be
added in future releases. Though all functions and variables can be
used with the singleton pattern, which in the end acts like a class
variables and class functions.

Additional concepts are:
• The extension of classes in order to create a sub-class
• The override of class methods and polymorphism when it comes to

calling methods

If you are a C++ developer or a experienced developer in another
object-oriented programming language, you will know many of the
concepts of Basic For Qt®.

Object-oriented programming means every object is part of another
object.

For example, in the real world, cars consist of many objects like
windows, steering wheels, and so on. There is only one class (building
plan) for a window or steering wheel. Therefore there exists a class
window and a class steering wheel, but many objects window or
steering wheel, which are the instances of a class. An instance of a
class is also called an object of a class. Classes exist when you write
your code. Objects are created when Basic For Qt® runs your code
using your classes!

Every class has the following elements:

1. Super-class
2. Attributes (variables, constants...)
3. Methods/Procedures

Super-class means all attributes and methods of the parent-class apply
to the new class in addition to attributes and methods you declare in
the new class. Attributes can be constants, or variables containing to a
class.

Methods are procedures and functions of a class. Methods are arguably
the most important part of any object-oriented programming
language. Whereas classes and objects provide the framework and
class and instance variables provide a way of holding that class’ or

Page 17

object’s attributes, the methods actually provide an object’s behavior
and define how the object interacts with other objects in the system.
Variables and methods can be related to a class (one time in memory)
or can be instance-related (as many as instances of that class exist) in
the declaration of a class (outside a method):

Instance-variable, e.g. Dim instanceVar
Instance-method, e.g. Sub instanceSub()
Instance-method or instance-variable can only be used together with
an object. Instance-variables are like local variables of a procedure.
Local variables only exist after calling the procedure, instance-
variables only exist within the lifetime of an object. Classes can give
all its elements to its child, which is called inheritance.

Inheritance of classes
Inheritance is an important part of object-oriented programming. Basic
For Qt®, supports single inheritance, meaning every class inherits one
parent class. It is not possible to inherit from many classes. In the far
future, it might be possible to use an interface to do many things you
could do with multi-inheritance. Unlike in C++, all objects in Basic For
Qt® are created when you declare them with a "Dim NAME As TYPE"
statement. You do not need to use "new" like in C++. For details and
exceptions read the language reference.

A class is a collection of data definitions and methods working on those
data. Data definitions and methods describe the content and the
behavior of an object. Objects are instances of a class. You cannot do
much with a single class but can do much more with an instance of a
class, a single object containing variables and methods. Object-
oriented means the objects are the centerpiece, not methods and
variables.

Statements and expressions
Statements are a complete action in Basic For Qt®. Statements can
contain keywords, operators, variables, constants, and expressions.
Every statement can be categorized by one of the following:

• Statements as declaration or definition for class, variable,
constant, procedure, function, method

Page 18

• Assignment statements, assigning a value or expression to a
variable or constant

• Executable statements performing an action. These statements
can execute a method, function, procedure, loop, or condition

• Executable statements often contain conditional or mathematical
operators (even complex expressions).

Multi-Line statements
Currently, only single-line statements are supported. But you may use
_ to connect several lines.

Variables and Data Types
While computing expressions you may need to store values for a short
time. For example, you would like to calculate different values,
compare these values, and depending on those values, perform
different operations. In order to compare values you need to store
them. Storing does not save the values on disk but in memory because
you need the values only when running your program.

Basic For Qt® uses variables to store values at runtime of your
program. After stopping your program, all variables (even objects) are
deleted. A variable can change its value at any time. You can change
its value by assigning an expression, another variable, or a constant to
it. A variable is a space in memory used by Basic For Qt® to store
values so variables are not stored in a file. Like a file, a variable has a
name (used to access the variable and to identify it) and also a data
type to specify the type of information a variable holds.

Basic For Qt® knows instance-variables and local variables. Instance-
variables are part of an object and local variables are part of a
procedure, function, or sub (also called method).

Declaration of Variables
Before using variables, you must declare them. You must define the
name and the data type of a variable.

The ‘Dim’-statement declares a variable. ‘Dim’-statements are one of

Page 19

many variable declaration statements, which slightly differs from the
others. You may combine 'Dim' togehter with ‘Public’ or ‘Private,’.

 Dim myName As String

Variables can be declared everywhere in procedures, functions, and
subs, not only at the top of procedures, functions, and subs. However,
most or the time they are at the top. Every line of your source code
may contain only one declaration statements for one variable. Which
data type the variables have, depends upon the way you declare the
variables. The default data type is a generic object.

 Dim firstname ' generic object
 Dim sirname As String

 Dim lastname As String

sirname is type ‘String’ lastname is type ‘String’

Or explicitly with different types:

To use a data type you have to write it for every variable, otherwise
the default data type (generic object) would be used.

You may assign a value to the variable directly in the same line of
declaration.

 Dim name As String = "sunny sun"

Names of variables must not be longer than 128 characters and must
not use all characters possible. Do not use periods, commas and other
non-writable characters. Only the underscore (_) is allowed.
Important! Basic For Qt® does differentiate between a variable name
written in lowercase or uppercase. In fact you cannot write it
differently in every line. Always write your variable names
consistently. So Named, named, naMED are different variables.

Use the following rules to name functions, subs, constants, variables,
or arguments in Basic For Qt®: Use a letter (A-Z, a- z) or underscore
(_) as your first character

Never use whitespace (), period (.), exclamation mark (!), or the
following characters : @, &, $, #, „ in your names.

Page 20

The name may contain numbers but must not start with a number.

Do not use names already in use by predefined elements of the Basic
For Qt® language, such as keywords (e.g. ‘If’), built-ins, classes etc.
This would lead to a name collision in which the original language
element would be expected. Your program will not compile.

You cannot use variables with the same name in the same scope. e.g.
you cannot declare variable ‘age’ two times in a function, but you can
declare ‘age’ in another function (at different places).

Declarations of variables in different scopes
You can place a declaration statement inside a function, sub, or
method to declare a variable in local scope. Additionally, you can
place a declaration to declare an instance-variable in the declaration
section of a class. The place of the declaration determines the scope
of the variable. The scope of a variable cannot change at runtime of
your program, but you can have different variables with the same
name at different places. For example, if you have the declaration of
a variable named ‘price’ in a function, and the same declaration in a
class, all uses of this variable in the function are related to the local
variable ‘price,’ all uses outside the procedure are related to the
instance variable ‘price.’

A variable named sName with type of ‘String’ is declared in the
following example:

 Dim sName As String

If this statement is part of a function, then it is possible to use this
variable in the same function only in the lines after the declaration. Is
this statement part of a class declaration section, you can use it in all
methods of the class, but not outside the class (in fact it is declared as
‘Private’ implicitly). To be able to use it everywhere, you can use the
keyword ‘Public’.

Example:

 Public Dim sName As String

Page 21

Use of the 'Public'-Statement
You can use the ‘Public’-statement to declare public variables in class
scope, making the variable accessible from everywhere.

 Public Dim sName As String

Use of the 'Private'-Statement
Use the ‘Private’-statement to declare private variables in class scope,
making the variable accessible only from the same scope (class scope,
all class methods).

 Private Dim myName As String

If the ‘Dim’-statement is used in class scope without the keyword
'Private', it is treated as a ‘Private’-statement. Use the ‘Private’-
Statement to have cleaner, more readable code.

Local variables
The value of a local variable is available inside the procedure only. You
cannot access the value from outside the procedure. This makes it
possible to have the same variable name for different variables in
different procedures without name collision. Example:

 Sub test1()

 Dim i As Integer

 i = 1

 End Sub

 Sub test2()

 Dim i As Integer

 i = 19

 End Sub

Assignment-statement
Assignment-statements give or assign a variable a value or expression
with variables, constants, numbers, etc. An assignment always includes
a sign. The following example shows an assignment.

Page 22

 Dim yourName As String

 yourName = "Nadja"

After the declaration of a variable, you can use it, e.g. make an
assignment.

 Dim Cool As Boolean

 Dim myName As String

 Cool = True

 Name = "Julie"

Cool contains ‘True’, name contains ‘Julie’ after the assignment.

Lifetime of variables
The lifetime of variables is the time in which the variable exists or has
a value. The value of a variable can be changed during its lifetime. If a
variable is outside its scope, it has no value. If a procedure is
executed, a variable exists after its ‘Dim’-statement. Local variables
exists until the procedure completed; after reentering the procedure
all variables are created again after their respective ‘Dim’-statements.

So if you do not change the value of a variable during its lifetime in a
program, it contains the initialized value at program start. A variable
declared in a sub contains an assigned value until the sub is left. If the
same sub is called again, the value is reset to the initialized value.

If you use instance-variables you must consider that they only exist
together with the instance (object) to which they belong.

Place of declaration
Declare every variable and every procedure inside a class.

Syntax:

 Dim Name [As Type] [= Expression]

 [Public | Private] Dim Name [As Type] [= Expression]

Page 23

Data Types
Data types describe the type of data stored inside a variable. If you
declare a variable you must also give it a data type. Basic For Qt®
supports most common data types . You can use one of the following
data types:

• One of the simple data types (e.g. ‘Integer’)
• Name of a Basic For Qt® Framework class
• Name of built-in class (Qt class)
• User defined class

Simple Data Types
Simple data types store numbers and text. Simple data types are
simple because they are built-n within Basic For Qt® and are not
complex classes. Every simple data type has borders determining the
size of the stored number. If a value is too big it loses precision,
meaning it loses information!

The following table contains all Basic For Qt® supported datatypes
with their needed space in memory.

Simple data types are internally stored as objects in Basic For Qt® in
order to get some extra functionality like runtime-checking.

Data Type Size
Boolean: ‘True’ or ‘False’
Values can only be ‘True’ or ‘False’ (bool).

Integer: -2^63 till +2^63 –1 (also known as Byte, Short, Int8, Int16,
Int32, In64):

Stored as 64-bit numbers (qint64). Values can be -2^63 >= and +2^64.⇐

You can use integer variables to simulate enumerations, such as 0 =

black, 1 = white and so on. The range for Byte is 0..255.

String (also CString for non-unicode based Strings):
Actually, it is a class of the Qt Framework (QString).

Float (also known as Single or Double):

Page 24

They are stored as floating numbers with double precision (qreal). Values

can be between -1.79769313486232^308 bis -4.94065645841247^-324 or

between 4.94065645841247^-324 till 1.79769313486232^308

DateTime
They are stored as a QDateTime object.

Decimal
It is a fixed-point data type, as opposed to the floating-point Float. In
other words, it is always accurate to a specificnumber of decimal places,
four in this case. While the Float type can represent many more decimal
places, these are not needed in Decimal calculations and, in fact, can
introduce rounding errors. These errors are small but can have an effect
on overall accuracy. The Decimal data type is actually an 64 bit integer
type internally. In use, it is scaled by a factor of 10,000 to give four
digits tothe right of the decimal point. It permits up to 15 digits to
the left of the decimal point, resulting in a large range.

Generic object
Stored as references.

Class types/Objects
Variables can store objects (actually, references to objects).

Though an object variable can contain any object (actually, the
reference to that object), the binding is done at runtime (late
binding).

Type generic object
The data type generic object is automatically used if you do not
specifiy a data type for an argument, constant, procedure or variable.

 Dim myVar

An generic object can store the following value: Null

Comments
The comment symbol (’) is used in many code lines in this book.

Page 25

Comments can explain a procedure or a statement. Basic For Qt®
ignores all comments while compiling and running your program. To
write a comment, use the symbol (’) followed by the text of the
comment. Comments are printed in green on screen. Basic For Qt®
recognizes comments, as shown below.

 ' this is a comment till the end of this line

Comments are extremely helpful when it comes to explaining your
code to other programmers. So comments, normally, describe how
your program works.

Way of naming
When coding in Basic For Qt®, declare and name elements, like
procedures (functions and subs), variables, and constants and so on.
All names

• must start with a letter;
• must contain letters, numbers, or the sign (_); periods and

commas are forbidden;
• must not be longer than a defined length; and
• must not contain reserved words

A reserved word is a part of Basic For Qt® and has a predefined
meaning. These include keywords (e.g. ‘If’ or ‘Then’), built-in-
functions and operators (e.g. ‘Mod’). A complete list of reserved words
is available in the reference of Basic For Qt®. Be aware that names
are case sensitive, which means you must it write with the same
lowercase or uppercase letters everywhere.

Literals
Besides keywords, symbols, and names, a Basic For Qt® program
contains literals. A literal is a number or string representing a value.
There are different numerical literals.

Integer -1, 2, -44, 4453
Hex - 0xAA43
Float, always English formatted - 212.23, 12E1F

Page 26

Boolean - When you cast a numerical value to Boolean. Values with 0
are ‘False’. Other values are ‘True’.

String - Is simply text, but it must start with a (") and end with a (") so
that Basic For Qt® can recognize it as string. A (\") inside a string
is interpreted as single ("). In fact, all C++ escape codes are
applied. So you may use (\n) to insert a return in a string for
example.

Expressions
Expressions represent values. They can contain keywords, operator,
variables, constants or even other expressions. Examples for
expressions are:

• 1 + 9 (number operator number)
• myVar (variable)

Expressions can return a value or not. If an expressions is to the right
of an assignment statement, the expression gives or must give a value
back.

 myVar = 1 + 9

1 + 9 is 10 and this expression value (10) is stored in myVar. It is
exactly the same when the expression is used as a parameter in a
function call.

 MyProcedure(1 + 9)

Expressions are calculated at runtime and represents a value. The
result can be assigned to a variable or to other expressions listed
above.

Constants
Constants are similar to variables but they cannot change values.
When you declare a constant you assign a value to it that cannot be
altered during lifetime of your program. Example:

 Const border = 377

Page 27

This ‘Const’-Statement declares a constant and a value of 377.

Use the same rules for declaring constants as for variables. A ‘Const’-
statement has the same scope as the variable statement. To declare a
constant inside a procedure, place the ‘Const’-statement inside this
procedure (normally one of the first statements). To declare a
constant as accessible for all procedures, place it within the class
where the procedures are.

You may change the visibility of a class const to other class by using
'Public' or 'Private'.

 Public Const a = 34

 Private Const b = "Hey"

This following ‘Const’-Statement declares a constant conAge as public
with data type ‘Integer’ and a value of 34.

 Public Const conAge = 34

Declaring a const with explicitly writing down the type as well.

 Public Const myName As String = "Bill Clinton"

You must not declare many constants in one line.

 Const Name [As Type] = Expression

 Const Name [As Type] = Expression

 [Public | Private] Const Name [As Type] = Expression

Operators and Operands
Basic For Qt® supports many C++ operators. Operators are ‘+’ or ‘-’ for
example. Operands are numbers, strings, or variables (or expressions).
There are different kind of operators.

Operators for calculating
They are used for calculating of two operands. Every of those

Page 28

operators needs two operators. The minus (-) can be used to negate
values, like -9 means negative 9, +9 means positive 9, 9 means positive
9

Calculating operators are:

 + Addition – Addition adds two numbers. If you add a number and a string

Basic For Qt® cannot be sure if the result should be a number or
string. In this case, you must use the ‘&’ Operator instead of ‘+’ for
strings. e.g. “test“ + 4

• - Subtraction – Subtraction subtracts a number from another
number. e.g. 5 – 7

• * Multiplication - Use to multiply two numbers e.g. 33 * 7

• / Division - Use to divide two numbers. The result is floating point. e.g. 2 / 5

• \ Integer-Division - The result has data type ‘Integer’. e.g. 29 / 5

• Mod Modulus, also known as remainder of Integer-Division –
Returns the remainder of a result of an Integer-Division e.g. 45

Mod 10

Integer-Division results in an ‘Integer’ value.

Example: x is 10, y is 4

 MsgBox(x + y) ' is 14

 MsgBox(x – y) ' is 6

 MsgBox(x * y) ' is 40

 MsgBox(x / y) ' is 2.5

 MsgBox(x \ y) ' is 2

 MsgBox(x Mod y) ' is 5

Normally, the result has the data type of the operand (= expression)
with more precision.

Page 29

Increment and Decrement
To increment or decrement, use var = var + 1 or var = var – 1.

Comparison
Basic For Qt® has different operators to compare expressions: These
operators compare between two operands (expressions) and the result
is ‘True’ or ‘False’:

 = Equal

e.g. x = 3

 <> Unequal

e.g. x <> y

 < Smaller

e.g. x < 3

 > Bigger

e.g. x > 4

 <= Smaller or equal

e.g. x <= 4

 >= Bigger or equal

e.g. x >= 3

Logical operators (Boolean Operators)
Use logical operators for performing bit operations or combining bits
together. The result is ‘True’ or ‘False’. Basic For Qt® supports true
logical operators for decisions (’AndAlso’, ‘OrElse’).

 AndAlso

Both operands (expressions) must be ‘True’

Page 30

 OrElse - One of the operands (expressions) must be ‘True’

You can also use bit-operators instead of ‘AndAlso’ or ‘OrElse’. Bit
Operators

• And - e.g. 4 And 6 - Useful for doing logical conjunctions of two

expressions. The result is ‘True’ if both expressions are ‘True.’

• Or - e.g. 33 Or 8 - Useful for doing logical disjunctions of two

expressions. The result is ‘True’ if one of both expressions is

‘True.’

• Xor (exclusive or) - e.g. 77 Xor 3 - The result is ‘False’ if both

expressions are ‘True.’ Or the result is ‘True’ if one of both

expressions is ‘True.’

• Not - e.g. Not 5 -Useful if you would like to negate expressions.

Furthermore, ‘Not’ inverts a bit of a byte.

A result is 0 when all bits are not set (binary 0000 0000). You can use
shift operators Shr or Shl.

Other Operators
• ^ Power IS NOT SUPPORTED THIS WAY – See the math function in the

language reference to get a workaroud. Useful if you want to use

power. If they are many powers in one expressions they are

processed from left to right.

• . dot operator - Needed for calling methods

Operator order
Basic For Qt® supports the operator order of C++. Normally, an
expression is executed from left to right following standard
mathematical rules.

e.g: x = 10 + 10 / 2 results in 15 and not 10, because / is calculated
before +.

Here is the overview about operator order/priority from top to
bottom, which means ‘*’ is executed before ‘And.’:

 1. . ()

Page 31

 2. Not, !, (unary +), (unary -)

 3. * / Mod \
 4. & + -

 5. < > < = >= = == ===

 6. And

 7. Or Xor

 8. AndAlso

 9. OrElse

Use paranthesis () to change the order.

e.g. X = (10 + 10) / 2 results in 10 and not 15, because + is calculated
before / thanks to the braces.

Avoiding name collision
A name collision occurs when you use a name that was already defined
in Basic For Qt® (or even by Basic For Qt® itself = keywords). Avoid
name collisions by knowing the concept of scopes. There are different
types of scopes in Basic For Qt®: procedure scope, class scope and the
scope modifiers (’Public’, ‘Private’). You can have name collisions in
the following situations:

• If an identifer can be accessed from different scopes
• If an identifier has different meanings in the same scope
Most name collisions can be avoided by using full qualified names of
identifiers.

Editing source code
Editing source code is no different than editing text in a word
processor. You have a cursor showing the current position you can type
in. The find and replace commands within the editor work just as in
your word processor, as well as many other common commands.

Working with objects
Because Basic For Qt® is an object-oriented programming language,
you probably would like to know how to use these features. The
following issues need to be discussed:

Page 32

How can I create a class?
How can I create an object (instance) of a class?
How can I use class-variables, class-methods, instance-variables and

instance-methods?
How can I convert an object into another object?

Create new objects
Either you create an object based on a built-in class of Basic For Qt®
(Qt or Basic For Qt® Framework), or you create it from your own
defined class.

Use of Init functions
A variable, which contains the object and is declared, does create the
object at once by calling its default init function. This variable only
has the data type of an object and represents only a reference to an
object just created. For each data type exists at least one init
function, which has the same name as the object has.

 Dim a As List

Creates an object of list and assigns a reference to the object variable
a.

 Dim a As List = List(1, 2, 3, 4, 77)

Creates an object of list and assigns a reference to the object variable
a. The list object contains the values 1, 2, 3, 4, and 77 as integer
objects.

Create a class
A class can inherit from another class (be child of that class). The
declaration of a class consists of a class name and the super (parent)
class name. Furthermore, you have init functions, sometimes a
destructor (finalize method), some variables (instance-variables), and
procedures (methods, instance-methods) and, of course, some
constants.

Page 33

Parts are:

• Variables
• Constants
• Functions
• Subs
• Events/Outlets/Signals/Slots
•

A class can only be declared inside a class file. It is not possible to
declare many classes in one class-file.

Classes are not executed, but methods are
A new created class only contains the declaration part (class name and
super class name), but no methods. These must be created by the
programmer. Basic For Qt® does not run any class, but the methods
(functions and subs) inside the class.

Accessing objects
Accessing objects is done by using the dot operator (.).

Example:

objectInstanceName.constantname
objectInstanceName.variablename
objectInstanceName.subname
objectInstanceName.functionname

Accessing instance-variables
Accessing variables is done by using the dot operator (.).

Example:

 myObject.variable

When accessing instance variables, use the name of the object
variable:

 objectName.instanceVariable

Page 34

Please remember! Instance-variable are part of an object of a class, so
a instance-variable exists how often objects exists of that class and
only at during the lifetime of the object.

Example:

 Private Dim myInstanceVariable As String

Another example:

Accessing inside a method:

 Dim o As myClass

 o.instanceVariable = 99

Instance-methods
Instance-methods are only present when its object is present. You may
use ‘Me’ inside instance-methods.

The method is by default an instance-method.

Calling methods
Again, use the dot opertator (.) to access the methods.

 myObject.myInstanceMethod()

 Sub myInstanceMethod

 ...

 End Sub

References to objects
Using the ‘=’-Assignment you can assign a reference of an object
variable to another object variable. Both variables then reference the
same object.

Copying objects
In future version, if you would like to copy (or values), you must use

Page 35

‘Copy’. Meanwhile copying have to be done manually.

Comparison of objects
The ‘=’-comparison operator tests if two object variables have the
same value.

The ‘==’-comparison operator tests if two object variables points to
the same object, not if both variables’ objects have the same content.

The ‘===’-comparison operator tests for equal classes.

Creating object variables
Think of an object as a variable, like it would be the object itself. You
can access the object through a object variable, or call a object
method.

How to create an object variable?

1. Declare an object variable 2. Assign an value to the object variable
or assign an existing object.

Declaration of an object variable
To declare an object variable, use the ‘Dim’-statement or another
declaration statement (’Public’, ‘Private’). A variable, which
references an object, must be of type ‘QObject’, or specific object
type (like ‘String’...).

Some declaration of objects examples:

 ' Object1

 Dim Object1

 ' Object1

 Dim Object1 As QObject

 ' Object1 as String-Object of the Basic For Qt® Framework

 Dim Object1 As String

Page 36

When using an object variable without a declaration, the object
variable has the default data type generic object.

The declaration of an object variable with data type object is useful
when you do not know which object type you would like to have in a
generic sub. If you know the specific object, declare the object
variable with the same data type as the object.

Example with normal object type and specific object type:

 Dim Objekt1 ' QObject

 Dim Objekt1 As Sample ' Sample

The declaration of specific object types has some advantages, such as
type checking and more readable or faster code execution.

Because objects are not passed by values in procedures, an assignment
of an object does not copy an object. Instead you must provide proper
methods in the classes that can copy an object.

Assignment of objects to an object-variable
Using the ‘=’-statement lets you assign objects to an object variable.
An object variable can have the value of ‘Null’ or an object reference.
Some examples:

 Object1 = Object2 ' object reference

 Object1 = Null ' set no object reference

 Dim myString As String

 Dim myString2 As String

 myString = myString2

Use current instance or object / Me
The keyword ‘Me’ references the current instance (or object) in which
the code is currently executed.

Page 37

Example:

 Sub changeObjectColor(Object1 As myObject)

 Object1.myBackColor = myRGB(256, 256, 256)

 End Sub

 Sub otherMethod()

 changeObjectColor(Me) ' statement inside the object

 End Sub

The keyword 'Super' for accessing the super object of the current
object is not supported yet.

Subclassing and inheritance
There is another possibility to extend your own classes or Qt classes.
This is called inheritance, meaning you use a super class as a template
for a new class in which you add new methods, variables, etc. All
elements, like methods and variables of the super (parent) class, are
automatically inside the new class (hidden) and can be accessed and
used depending upon the declaration in the parent class. To change
the behavior, override a method of the parent class (have the same
name and arguments), so that the algorithm of the parent class uses
the new method in the new class instead of the original method in the
parent class. Inheritance is a very powerful and an important feature
of object-oriented programming languages.

Using the file extension tells Basic For Qt® which super class it uses for
the new class.

Because, every class has a super class, all classes forms together a
class hierarchy (or inheritance hierarchy). The inheritance hierarchy
like a tree, with a root and many twigs (many child classes). A famous
example is the paintEvent method of a QWidget, which is considered
to be overridden by you to implement custom drawing for your
control. This is done when you would like to have a custom control.

Hidden Methods
An existing method, like a variable, in a parent class can be
overloaded by a method in the child class through inheritance, though

Page 38

it is possible to access both methods with the same name. This is
called hiding, because it is not automatically visible anymore. Hidden
methods are also called overridden methods. Overriding takes place if
the child class has a method with the same methods’ signature (name,
return type, same arguments) as the parent class. The parent method
is now overridden.

In the future, not implemented yet: If you would like to access the
parent method, enter ‘Super’ dot (.) and the method name:

Super.myMethod() ' access parent method myMethod() ' access me
method

Overriding methods
Overriding occurs if the child class has a method with the same
method signature (name, return type, same arguments) as the parent
class. The parent method is now overridden. If this method is called
within the child class, the new defined method is used, even by the
parent methods (included by the child class). Overriding methods is a
very important technique in object-oriented programming. However,
do not confuse overriding with overloading. Overloading means having
many methods with the same name in a class but with different
method signatures (different return type or arguments).

Basic For Qt® treats variables and methods equally within a class. It is
no different when it comes to overriding methods and hiding variables.

In the future, not implemented yet:

You can easily access hidden variables by casting its type to the parent
type or using the keyword ‘Super’. The difference is an internal
meaning because variables are different when used in child and parent
class (they actually use their own variable), while methods are used by
both (both parent and child class use the same method!).

Calling an overridden method
In the future, not implemented yet:

Page 39

Access overridden methods by casting its object variable to the parent
type or use the keyword ‘Super’.

If you override a method, you have two methods: the old method in
the parent class and the new method in the child class. Access the old
method explicitly using ‘Super.’ Access the new method using ‘Me’ or
the standard call of a method.

Hiding data
Hiding data (variables and constants...) is a very important technique
in object-oriented programming. Hiding data means not all data in a
class can be accessed by other classes, but through methods of the
same class in which the data is present so that it is only visible within
this class. This helps reduce mistakes when using internal data of a
class by other classes or modules. You have public methods and
variables that are accessible by all others and you have private
methods and variables that should only be used by the class itself and
those public methods. You automatically hiding data, when you use the
‘Private’ modifiers for variables and sometimes for methods. It
depends on the code you write. Further reasons for hiding data are:

Internal variables, which are externally visible, mixing up the API for
other coders etc. Hiding them leads to small, smart classes with a few
variables and methods visible to others.

If a variable is visible you must document it. Hiding variables reduces
documentation time.

Scope modifiers
To hide variables or methods you must declare them as ‘Private’:

 Private Dim wings As Integer ' only visible within this class

 Private Function countWings() ' only visible within this class

 ...

 End Function

A private variable is visible for the class in which it has been declared.
This means the methods of this class can only use this private variable.

Page 40

Private methods and variables are not visible to child classes of the
class in which they are declared. Non-private methods and variables
are always visible to child classes.

Besides ‘Private,’ there exists ‘Public’ as scope modifiers. Public
means that every part of your program (any other class) can access
and use the public declared part of your class (variable or method).
The default modifier is ‘Private.’ If you do not write ‘Public’ in front of
your variable or method, it is automatically declared as private.

Some tips for using scope modifiers. Use ‘Public’ for methods and
variables that are used and accessible from everywhere.

Arrays
If you have worked with other programming languages, you understand
the concept of arrays. Arrays are variables that look like a chain. All
elements of that chain may have the same data type and can be
accessed by an index. These variables have one name but a different
index. You can use the array as one block or as one element of the
array.

 Dim a As List

 a = List("one", "two", three") ' modern style: declares a list with

three strings

Using arrays leads to cleaner, more flexible code because you can use
loops to use or access thousands of variables (the arrays). Arrays have
an upper and a lower boundary and elements of that array are
between those boundaries. The important role of new arrays is rising,
because the more modern style of having classes imitating arrays with
more flexibility and functionality, especially when using Qt, leads to
cleaner code. There are the Basic For Qt® Framework classes ‘List’,
‘Dictionary’ and ‘Data’, which should fit in most situations.

Control of the program flow
The statements that make the decision and loops are known as control
structures.

Page 41

Decisions
The term ‘decisions’ refers to the use of conditional statements to
decide what to execute in your program. Conditional statements test if
a given expression is ‘True’ or ‘False’. Then, statements are executed.
Normally a condition uses an expression in which a comparison
operator is used to compare two values or variables.

Single decision - If
A single decision is used to execute a set of statements if a condition is
set (’If’-statement). If the condition is ‘True’ then the statements
after the ‘Then’ are executed and the statements after the ‘Else’ are
skipped. If the condition is ‘False’, the statements after the ‘Else’ are
executed. If the item after ‘Then’ is a line number, a goto is executed.
If the condition is ‘True’ and there is no ‘Then’ statement on the same
line, statements are executed until a line with an ‘End If’ is found.

Syntax:

 If Expression Then

 [Statements]

 End If

 If Expression Then

 [Statements]

 Else

 [Statements]

 End If

 If Expression Then

 [Statements]

 Else If Expression

 [Statements]

 Else

 [Statements]

 End If

 If Expression Then

 [Statements]

 Else If Expression

 [Statements]

Page 42

 Else If Expression

 [Statements]

 Else

 [Statements]

 End If

 If Expression Then

 [Statements]

 Else If Expression

 [Statements]

 End If

‘Else If’ introduces a secondary condition in a ‘If’-statement.

‘Else’ introduces a default condition in a ‘If’-statement.

‘End If’ ends a ‘If’-statement.

‘If’ evaluates ‘expression’ and performs the ‘Then’-statement if it is
‘True’ or (optionally) the ‘Else’-statement if it is ‘False’. Basic For Qt®
only allows multi-line ‘If’-statements with ‘Else If’ and ‘Else’ cases,
ending with ‘End If’. This works as zero is interpreted to be ‘False’ and
any non-zero is interpreted to be ‘True’

Example:

 Dim i As Integer

 Dim n As Integer

 If i 1 Then

 n = 11111

 Else If i = 2 * 10 Then

 n = 22222

 Else

 n = 33333

 End If

Select
The ‘Select’-statement is much more complicated than the ‘If’-
statement. In some situations, you may want to compare the same
variable or expression with many different values and execute a

Page 43

different piece of code depending on which value it equals to. This is
exactly what the ‘Select’-statement is for. ‘Select’ introduces a multi-
line conditional selection statement.

The expression given as the argument to the ‘Select’-statement will be
evaluated by ‘Case’-statements following. The ‘Select’-statement
concludes with an ‘End Select’-statement. As currently implemented,
‘Case’-statements may be followed by string values, in this case
complex expression can be performed. Strings are compared case
sensitive. The test expression can be ‘True,’ ‘False’, a numeric, or
string expression.

‘Select’ executes the statements after the ‘Case’-statement matching
the ‘Select Case’-expression, then skips to the ‘End Select’-statement.
If there is no match and a ‘Case Else’-statement is present, then
execution defaults to the statements following the ‘Case Else’. You
may also use ‘Select’ together with the Basic For Qt® Framework class
‘String’. It automatically generates the right calls for you. See the
Basic For Qt® Framework ‘String’ examples for help.

Syntax:

 Select Expression

 Case Expression

 [Statements]

 Case Expression

 [Statements]

 Case Else

 [Statements]

 End Select

Example:

 Dim i As Float

 Dim n As Integer

 i = 4

 Select i

 Case 0

 n = 0

 Case Else

 n = 999999

Page 44

 End Select

Loop-statements
The statements that control decisions and loops in Basic For Qt® are
called control structures. Normally, every command is executed only
one time but in many cases it may be useful to run a command several
times until a defined state has been reached. Loops repeat commands
depending upon a condition. Some loops repeat commands while a
condition is ‘True’, other loops repeat commands while a condition is
‘False.’ There are other loops repeating a fixed number of times and
some repeat for all elements of a collection.

For Next
The For-Next loop is useful when you know how often statements
should be repeated. For-Next defines a loop that runs a specified
number of times.

Syntax:

 For counter = start To stop [Step stepExpression]

 [Statements]

 Next

‘Counter’ is a numerical variable used to store the current counter
number while the loop is running. ‘Start’ is a numerical expression that
determines the starting value of the loop counting. ‘Stop’ is a
numerical expression that determines the ending value at which the
loop will stop. To count in steps other than the default value of 1, use
‘stepExpression’ to determine a specific value for incrementing the
counter. If you use ‘Break’, this exits the ‘For Next’ loop immediately
and continues with the line following to the ‘Next’ statement. This is
usually used in connection with an ‘If’ clause (If something Then Break)
to exit the loop before its specified end.

The ‘Next’ statement is the lower end of the loop and increments
‘counter’ by the value given by ‘stepExpression’ or by 1 if no
‘stepExpression’ incrementation is defined. The loop repeats as long as
the value of ‘counter’ + 1 is smaller equal the value of ‘stop.’

Page 45

Notes:

The speed of ‘For Next’ loops depends on the variable types used. ‘For
Next’ loops run fastest when ‘counter’ is an integer variable and
‘start,’ ‘stop,’ and ‘stepExpression’ are integer expressions.

Count backwards using ‘stepExpression’ with a negative
incrementation value. Take extra care when nesting ‘For Next’ loops.
Remember to end the loop last initiated (see example) or an infinite
loop occurs. Example 1:

 Dim ctr As Integer

 For ctr = 1 To 5

 MsgBox("Z")

 Next

For Each
In the future, not implemented yet:

If you use Basic For Qt® Framework classes like ‘List’ or ‘Dictionary’,
you have the option to access all elements of those containers, which
the more modern style syntax ‘For Each’. See the examples of ‘List’
for more details.

Other kind of loops
Use the following loops when you are not sure how often a command
should be repeated: ‘Do’, ‘While’, ‘Loop’. There is only one way to use
the keyword ‘While’ in order to test a condition within a ‘Do...Loop’-
statement.

You can test the condition before the commands inside the loop are
executed or you can test the condition after the commands of the loop
have been executed at least once. If the condition is ‘True’ (in the
following procedure ‘SubBefore’) the commands inside the loop
execute. If you set ‘myNumber’ to 9 instead of 20, no command inside
the loop execute. Inside procedure ‘SubAfter,’ all commands execute
at least once because the condition is not true.

Page 46

 Sub SubBefore()

 Dim Counter As Integer = 0

 Dim myNumber As Integer = 20

 Do While myNumber > 10

 myNumber = myNumber - 1

 Counter = Counter + 1

 Loop

 End Sub

Do While...Loop
A ‘Do While’ loop is a group of statements enabling you to define a
loop that will repeat until a certain condition remains ‘True’.

‘Do’: launches the loop and must be the first statement ‘Loop’: ends
the loop and must be the last statement ‘While’: lets the loop repeat
while the condition is ‘True’ Condition: a numeric or string expression
with a result of ‘True’ or ‘False’ ‘Break’: exits the loop at this very line
and lets the program continue behind the ‘Loop’-statement
‘Continue’: jumps directly to the ‘Loop’-condition

Syntax:

 Do While Expression

 [Statements]

 Loop

Examples: In the first example, the loop repeats as long as ‘xyz’
remains 5:

 Do While xyz = 5

 (lines of code)

 Loop

Please note the lines of code will never be executed if ‘xyz’ is not 5
when entering the loop. You may use the condition with a number of
expressions like 'And' and 'Or':

 Do While x < 10 And y < 10

 (lines of code)

Page 47

 Loop

The loops repeats while x and y are smaller than 10.

Note: Please be careful when nesting several loops within each other.

Good programming practice would recommend using separate
variables for each loop. The same might happen with a ‘For...Next’
loop within:

 Do While counter < 10

 (lines of code)

 For counter = 1 To 5

 (lines of code)

 Next

Loop Moreover, be careful not to interchange the different loops:

 Do While counter < 10

 (lines of code)

 For i = 1 TO 5

 (lines of code)

 Loop

 Next i

This results in an error because ‘Loop’ has to appear after ‘Next.’

Explicitly leave a loop
Normally, a loop ends when its condition allows it. Sometimes it might
be useful to exit a loop before the condition is met. Manually exit a
loop using the ‘Break’-statement.

‘Break’ – leave a for loop

Syntax:

 Break

Page 48

Explicitly test a condition
A loop condition is tested after every loop iteration. However, it might
be useful to test the loop condition earlier. Manually test a loop
condition using the ‘Continue’-statement. As a result, the current loop
condition is tested.

‘Continue’ – manually test loop condition Syntax:

 Continue

Nested control structures
Embed control structures into other control structures by putting a
‘For’-loop into an ‘If’-statement. This is called nested control
structures. You can embed as many control structures as needed, but
you should indent every control structure line so that your code is
easier to read. The examples in this manual are always intended and
formatted.

Procedures / Methods
Your programs have been short, each designed to demonstrate a single
programming technique. When you start writing real programs,
however, you will discover they can grow to many pages of code. When
programs increase in length, they become harder to organize and read.
Professional programmers use modular programming to decrease the
length of programs. Modular programming uses procedures. A
procedure is like a small program within your main program. Basic For
Qt® source code is inside a procedure, normally. A procedure is a set
of commands inside the written words ‘Sub’ and ‘End Sub’ or
‘Function’ and ‘End Function’. There are different types of
procedures. In fact, your program contains of methods only, declared
inside of classes. The main program, like in old BASIC languages, can
be considered to be represented by the method “Init” of the Global
class.

• Sub (inside a class) - Sub-procedures contain commands and
statements but do not return a value or cannot be used in
expressions.

• Functions (inside a class) - Function-procedures contain

Page 49

commands and statements. Function-procedures always return a
value, e.g. the result of a complex math operation. Because
functions return values, they can be used in expressions.
Functions like subs can have arguments.

• Event-procedures are always function-procedures. An event
procedure is related to a control. When the runtime of Basic For
Qt® notices an event, it calls the related event-procedure, if it is
connected.

Sub-Procedure
A sub-procedure can have arguments, e.g. variables, expressions, or
constants that are given to the sub-procedure while calling it.

Syntax:

 Sub Name([Arguments])

 [Statements]

 End Sub

 Sub Name([Arguments])

 [Statements]

 End Sub

Function-Procedure
A sub-procedure can have arguments, variables, expressions, or
constants that are given to the sub-procedure when calling it.
Function-procedures return values.

Syntax:

 Function Name([Arguments]) [As Type]

 [Statements]

 End Function

Arguments
For all practical purposes, a procedure can have as many arguments as
needed. You must be sure the arguments you specify in the

Page 50

procedure’s call exactly match the type and order of the arguments in
the procedure’s sub line. To use more than one argument in a
procedure, separate the arguments with commas. You can pass one or
more arguments to a procedure. Keep in mind the arguments are
passed to the procedure in the order in which they appear in the
procedure call. The procedure’s sub line must list the arguments in the
same order they are listed in the procedure call.

If a procedure does not have arguments, you must not write any
expression or variable inside the braces when calling it. All statements
and commands are executed only after calling the procedure.
Arguments have names. If you have many arguments, you can separate
them by a comma (,). Every argument is like a variable declaration and
leads to automatically declared variables when the statements and
commands of a procedure are executed.

Syntax of arguments:

 Name As Type

 Name [As Type]

Named arguments
There are two ways to give arguments to a procedure. One is to name
the arguments, the other with giving values only. Arguments – the
normal way:

 PassArg(Frank", 26, 22879)

Named arguments:

 PassArg(strName := "Frank", intAge := 26, birthDate := 22879)

If you use named arguments, you must list the arguments in the right
order. It is probably more readable.

A named argument contains the argument name, colon (:) and equal
sign, and the expression the argument should have.

Page 51

Writing function-procedure
A function-procedure contains commands and statements, which are
after ‘Function’ and before ‘End Function.’ A function-procedure is like
a sub-procedure but it can return a value. That is the only difference
between them. A function-procedure can also have arguments. You
must use the keyword ‘Return’ for return values.

Call of sub-procedures and function-procedures
To call a sub-procedure within another procedure, write the name of
the subprocedure to call and all needed arguments.

Add comments to a procedure
When creating a new procedure or changing code, comment the new
or changed code. Comments have no effect on the program when it is
executed, they only help other developers understand the code.

Comments start with (’). This character tells Basic For Qt® to ignore
all text until reaching the end of line. Find more information about
comments and other comment styles in the previous chapter about
comments.

Hints for calling procedures
When changing the name of classes, be sure to change all places the
class is used or Basic For Qt® runs into an error. You could use the file
replace in the Basic For Qt® menu.

To avoid name collisions, give your procedures unique names.

Leave procedure
You can leave the procedure at any line inside of a procedure. For
that, use the keywords ‘Return’. For a function-procedure you need to
use “Return EXPRESSION”.

Syntax:

Page 52

 Return

Use of return value after calling a function-procedure
In order to get the return value of a function-procedure, you need a
variable.

Example:

 answer3 = myMsgBox("Are you satisfied with your income?")

If you do not need the return value, ignore it and use the function-
procedure like an ordinary sub-procedure.

Example:

 myMsgBox("Task done!")

Writing recursive procedures
When procedures call themselves they are called recursive procedures.

Example:

 Function doError(Maximum)

 doError = doError(Maximum)

 End Function

For recursive procedures you need a break out condition as argument,
or you will get an infite loop. This error can be hidden when two
procedures are calling each other once and once again or if no break
out condition is used. In some situations recursive procedures might be
useful.

Example:

 Function Fakulty (N As Float)

 If N <= 1 Then ' end of recursive

 Return 1 ' (N = 0) no more calls

 Else ' Fakulty is called again

Page 53

 ' wenn N > 0.

 Return Fakulty(N - 1) * N

 End If

 End Function

Carefully test a recursive procedure to make sure if it works as
expected. If an error occurs, check the break out condition:

• Check the logic of the procedure. Use loops inside loops instead of
recursion calls.

Functions
Functions are very similar to subs in that both are procedures, but
functions return a value and can be used in expressions.

Syntax:

 Function Name([Arguments])[As Type]

 [Statements]

 End Function

The arguments of a function-procedure are used as the arguments of a
sub procedure. Define a function-procedure by using the keyword
‘Function.’ You should also define a return type for every function and
normally you does define the return type explicitly. For more
information about using procedures see the previous chapter.

Function Return
If you would like to set the return value of a function and exit the
function, use ‘Return’. With this statement you immediately leave the
function.

Syntax:

 Return Expression

Page 54

Modifiers / Scopes
Modifiers and scopes are a very important aspect of the Basic For Qt®
programming language and of modern programming languages in
general. Scopes tell Basic For Qt® when a variable, a constant, or a
procedure can be used, from which place in the source code files,
actually. There are different scopes (abstract places in code):

• Private class scope
• Public class scope

Scopes are useful when you would like to organize your program or
want to avoid name collisions of variables.

When you refer to a variable within your method definitions, Basic For
Qt® checks for a definition of that variable first in the current scope,
then in the outer scopes of the current method definition. If that
variable is not a local variable, Basic For Qt® then checks for a
definition of that variable as an instance in the current class.

Because of the way Basic For Qt® checks for the scope of a given
variable, it is possible for you to create a variable in a lower scope
such that a definition of that same variable hides the original value of
that variable. This can introduce subtle and confusing bugs into your
code. The easiest way to get around this problem is to make sure you
do not use the same names for local variables as you do for instance
variables. Another way to get around this particular problem, however,
is to use ‘Me.variableName’ to refer to the instance variable and just
variable to refer to the local variable. By referring explicitly to the
instance variable by its object scope you avoid the conflict.

Local scope
A variable declared inside a procedure is not usable outside the
procedure, only the code of the procedure in which the variable has
been declared can use it. The following example demonstrates how a
local variable may be used. There are two procedures, one of them
has a variable declared:

 Sub localVar()

 Dim str As String

Page 55

 str = "This variable can only be used inside this procedure"

 Log(str)

 End Sub

 Sub outOfScope()

 Log(str) ' causes a compiler error

 End Sub

Classes
A simple application can contain a simple interface, while all source
code is inside a class file. Create a class, which contains a methods,
which is useful for your interface.

You Basic For Qt® code is stored in classes. You can archive your code
within classes. Every class consists of the declaration part and the
methods you have inserted.

A class can contain:

• Declarations - for variables, types, enumerations and constants
• Methods (also called procedures) - which are not assigned to a

special event or object. You can create as many procedures as
you want.

You must not put several code of classes in one file.

Classes unlike procedures are not executed
A class consists of a declaration part only; you must create the
methods yourself. Additionally, a class contains no main program.
Methods are executable inside classes and execute if the proper event
is raised or if another part of your program has called a method of that
class.

Edit Class
It is not much different editing text in a word processor or in Basic For
Qt®’s IDE. You have a cursor showing the current position you can
type. You can also find and replace inside your source code as in a
word processor.

Page 56

The Basic For Qt® development environment
The Basic For Qt® development environment contains windows, a
toolbar, and an editor that make developing your Basic For Qt®
application easy. It is actually an integrated development environment
(IDE). When a development environment is said to be integrated, the
tools in the environment work together.

A project is related to a directory containing all files of that project.
The interface (windows, controls and so on) are created using the Qt
Designer coming with the Qt SDK. So you have the same controls like
C++ coders have. In fact, you can directly use Qt as C++ developers are
able to.

For example, the compiler might find an error in the source code. In
addition to displaying the error, Basic For Qt® opens the source file in
the text editor and jumps to the exact line in the source code where
the error occurred.

A large part of application development involves adding and arranging
visual elements on interfaces. Qt Designer is a great tool to make
designing interfaces a simple process.

Windows
Basic For Qt® windows are used to develop your programs, including
monitoring the status of your projects at any time. These
windows/programs include:

• Qt Designer – uses drag and drop controls, as well as arranges
them in this main development area. It is the primary tool you
use to create your programs.

• Project list – works with the different parts of your project. Its
views include objects and files.

• Source code editor – where you add and customize source code
for your project in any phase of the development cycle.

Page 57

Toolbar
Basic For Qt® provides most common commands for quick access on a
toolbar.

Editor
Basic For Qt® has one editor for creating and managing Basic For Qt®
projects. You can use this editor to control the development of your
projects, such as editing source code and manipulating classes.

Classes and objects of Basic For Qt®
There are two types of objects in Basic For Qt®: visual objects and
invisible objects.

• A visual object is a control, is visible at runtime, and lets users
interact with your application. It has a screen position, a size,
and a foreground color. Examples of visual objects are buttons.

• An invisible object is not visible at runtime. Some objects can
contain other components, such as an application window
containing a button.

With Qt Designer you add visual objects/controls to your forms to
assemble applications.

Projects
Projects keep your work together. When developing an application in
Basic For Qt®, you work mainly with projects. A project is a collection
of files that make up your Basic For Qt® application. You create a
project to manage and organize these files. The project list shows
each item in a project. Starting a new application with Basic For Qt®
begins with the creation of a project. So before you can construct an
application with Basic For Qt®, you need to create a new project.
Normally, you do this by copying an existing project’s directory to a
new location and changes the files you need. You can add and remove
files directly or in Basic For Qt®'s IDE itself.

Page 58

Interfaces
In your Basic For Qt®-application, interfaces are not only masks for
inputting and changing data but they are the graphical interface of
your application. In the eyes of the beholder, they are the application!
By creating your application using interfaces, you control the program
flow with events that are raised in the forms.

Appendix
Argument

A value that is passed to a procedure or function. Also see Parameter.

Arithmetic Operations

Mathematical operations such as addition, multiplication, subtraction,
and division that produce numerical results.

Array

A variable that stores a series of values accessed using a subscript.

BASIC

Beginner’s All-Purpose Symbolic Instruction Code, the computer
language upon which Basic For Qt® is based.

Bit

The smallest piece of information a computer can hold. A bit can be
only one of two values, 0 or 1.

Boolean

A data type representing a value of true or false.

Boolean Expression

A combination of terms that evaluates to a value of true or false. For
example, (x = 5) and (y = 6).

Branching

Page 59

When program execution jumps from one point in a program to
another, rather than continuing to execute instructions in strict order.
Also see Conditional Branch and Unconditional Branch.

Byte

A piece of data made up of eight bits. Also see Bit.

Compiler

A programming tool that converts a program’s source code into an
executable file. Basic For Qt® automatically employs a compiler when
you run a program or select the File menu’s Make command to convert
the program to an executable file. Also see Interpreter.

Constant

A predefined value that never changes.

Data Type

The various types of values that a program can store. These values
include Integer, Float, and Boolean and so on.

Decrement

Decreasing the value of a variable, usually by 1. Also see Increment.

Float

The data type that represents the most accurate floating-point value,
also known as a double-precision floating-point value. Also see Floating
Point.

Empty String

A string that has a length of 0, denoted in a program by two double
quotes. For example, the following example sets a variable called str1
to an empty string: str1 = "".

Event (or Action)

A message that is sent to a program as a result of some interaction

Page 60

between the user and the program.

Executable File

A file, usually an application, that the computer can load and run.

File

A named set of data on a disk.

Floating Point

A numerical value that has a decimal portion. For example, 12.75 and
235.7584 are floating-point values.

Function

A subprogram that processes data in some way and returns a single
value representing the result of the processing.

Increment

Increasing the value of a variable, usually by 1. Also see Decrement.

Infinite Loop

A loop that can’t end because its conditional expression can never
evaluate to true. An infinite loop ends only when the user terminates
the program. Also see Loop and

Integer

A data type representing whole numbers.

Literal

A value in a program that is stated literally. That is, the value is not
stored in a variable.

Local Variable

A variable accessed only from within the subprogram in which it is
declared. Also see Variable Scope.

Page 61

Logic Error

A programming error that results when a program performs a different
task than the programmer thought he programmed it to perform. For
example, the program line If X = 5 Then Y = 6 is a logical error if the
variable X can never equal 5. Also see Runtime Error.

Logical Operator

A symbol comparing two expressions and resulting in a Boolean value
(a value of true or false). For example, in the line if X = 5 and Y = 10
then Z = 1, and is the logical operator. Also see Relational Operator.

Loop

A block of source code that executes repeatedly until a certain
condition is met. Loop Control Variable A variable holding the value
that determines whether a loop continues to execute.

Machine Language

The only language a computer truly understands. All program source
code must be converted to machine language before the computer can
run the program.

Mathematical Expressions

A set of terms using arithmetic operators to produce a numerical
value. For example, the terms (X + 17) / (Y + 22) make up a
mathematical expression. Also see Arithmetic Operations.

Method

A procedure associated with an object or control that represents an
ability of the object or control. For example, a Command Button’s
Move method repositions the button on the form.

Numerical Literal

A literal value that represents a number, such as 125 or 34.87. Also see
Literal and String Literal.

Page 62

Numerical Value

A value that represents a number. This value can be a literal, a
variable, or the result of an arithmetic operation.

Object

Generally, any piece of data in a program. Specifically in Basic For
Qt®, a set of properties and methods that represent some sort of real-
world object or abstract idea.

Order of Operations

The order in which Basic For Qt® resolves arithmetic operations. For
example, in the mathematical expression (X + 5) / (Y + 2), Basic For
Qt® performs the two additions before the division. If the parentheses
had been left off, such as in the expression X + 5 / Y + 2, Basic For Qt®
would first divide 5 by Y, then perform the remaining addition
operations.

Parameter

Often meaning the same as “argument,” although some people
differentiate argument and parameter where an argument is the value
sent to a procedure or function and a parameter is the variable in the
function or procedure that receives the argument. Also see Argument.

Procedure

A subprogram performing a task in a program but does not return a
value. Also see Function.

Program

A list of instructions for a computer.

Programming Language

A set of English-like keywords and symbols that enable a programmer
to write a program without using machine language.

Program Flow

Page 63

The order in which a computer executes program statements.

Relational Operator

A symbol that determines the relationship between two expressions.
For example, in the expression X > 10, the relational operator is >,
which means “greater than.” Also see Logical Operator.

Return Value

The value a function sends back to the statement that called the
function. Also see Function.

Runtime Error

An system error that occurs while a program is running. An example is
a divide-by zero error or a type-mismatch error.

Scope

See Variable Scope.

Source Code

The lines of commands making up a program.

String

A data type that represents one or more text characters. For example,
in the assignment statement str1 = "I’m a string," the variable str1
must be of the String data type.

String Literal

One or more text characters enclosed in double quotes.

Subprogram

A block of source code that performs a specific part of a larger task. In
Basic For Qt®, a subprogram can be either a procedure or a function.
Also see Function and Procedure.

Unconditional Branch

Page 64

When program execution branches to another location regardless of
any conditions. An example of an unconditional branch is the GoTo
statement.

User Interface

The visible representation of an application, usually made up of
various types of controls, that enables the user to interact with the
application.

Variable

A named value in a program. This value can be assigned and reassigned
a value of the appropriate data type.

Variable Scope

The area of a program in which a variable can be accessed. For
example, the scope of a global variable is anywhere within the
program, whereas the scope of a local variable is limited to the
procedure or function that declares the variable. Also see Local
Variable.

Page 65

Copyright
Copyright © 2007 - 2012 by www.q7basic.org.

Products named on this website are trademarks of their respective
owners.

Qt® is a registered trade mark of Nokia Corporation and/or its subsidiaries.

Page 66

	About This Document
	Why You Should Read It
	Note Of Thanks
	About The Author
	Supporter
	Tell A Friend!
	Basic For Qt® Needs Your Help!
	Give Us Feedback
	New Set Of Manuals
	Installation
	Introduction
	Qt
	What is a Computer Program?
	Programming Languages
	History of the Name
	All Kinds of BASIC
	Compilers and Interpreters
	The Programming Process
	Attack of the Bugs
	How much do I need to know to use it?
	Introduction to the Basic For Qt® programming language
	What is Basic For Qt®?
	Briefly and well in a sentence
	Basic For Qt®'s Past, Present and Future
	What is still needed to know about Basic For Qt®?
	Basic For Qt® is object-oriented
	Stable
	Basic For Qt® is Fast
	Rapid application development
	How Can I Get Basic For Qt®?
	On which platform is Basic For Qt® available?

	Software development with Basic For Qt®
	Event controlled programming vs. traditional programming
	How does an event controlled application run?
	Three Programming Steps

	Objects and classes
	Inheritance of classes

	Statements and expressions
	Multi-Line statements
	Variables and Data Types
	Declaration of Variables
	Declarations of variables in different scopes
	Use of the 'Public'-Statement
	Use of the 'Private'-Statement
	Local variables
	Assignment-statement
	Lifetime of variables
	Place of declaration

	Data Types
	Simple Data Types
	Data Type Size
	Class types/Objects
	Type generic object

	Comments
	Way of naming
	Literals
	Expressions
	Constants
	Operators and Operands
	Operators for calculating
	Increment and Decrement
	Comparison
	Logical operators (Boolean Operators)
	Other Operators
	Operator order

	Avoiding name collision
	Editing source code
	Working with objects
	Create new objects
	Use of Init functions
	Create a class
	Classes are not executed, but methods are
	Accessing objects
	Accessing instance-variables
	Instance-methods
	Calling methods
	References to objects
	Copying objects
	Comparison of objects
	Creating object variables
	Declaration of an object variable
	Assignment of objects to an object-variable
	Use current instance or object / Me
	Subclassing and inheritance
	Hidden Methods
	Overriding methods
	Calling an overridden method
	Hiding data
	Scope modifiers

	Arrays
	Control of the program flow
	Decisions
	Single decision - If
	Select
	Loop-statements
	For Next
	For Each
	Other kind of loops
	Do While...Loop
	Explicitly leave a loop
	Explicitly test a condition
	Nested control structures

	Procedures / Methods
	Sub-Procedure
	Function-Procedure
	Arguments
	Named arguments
	Writing function-procedure
	Call of sub-procedures and function-procedures
	Add comments to a procedure
	Hints for calling procedures
	Leave procedure
	Use of return value after calling a function-procedure
	Writing recursive procedures
	Functions
	Function Return
	Modifiers / Scopes
	Local scope

	Classes
	Classes unlike procedures are not executed
	Edit Class

	The Basic For Qt® development environment
	Windows
	Toolbar
	Editor

	Classes and objects of Basic For Qt®
	Projects
	Interfaces
	Appendix
	Copyright

